Optimize Completion Design and Well Spacing with the Latest Complex Fracture Modeling & Reservoir Simulation Technologies A Permian Basin Case Study with Seven Wells Presented by Hongjie Xiong hxoiong@utsystem.edu # **University Lands Introduction** Managing 2.1 million acres in the Permian Basin, West Texas - Over 200 operators - 2018 Net Daily Production - ~ 60,000 BOE per day - 2018 Net Revenue: > 1\$Billion - >20,000 potential drilling locations on current leases #### Study Projects Performed since 2016 - Geological study and modeling - Reserve and Resource assessment. - Well performance analysis and type well curves - Well Spacing study and optimization - Completion study and optimization with complex fracturing modeling - Artificial lift optimization studies - Underperforming well studies - Wellbore lateral length and orientation studies ### Overview - Introduction - The Objective - The Workflow - The Case History of 7 Wells and the History Match - Completion Design Optimization - Conclusions **SPE Hydraulic Fracturing Technology Conference** Case A ("False" Interference, leave resources behind) Case B (Wider spacing – leave MORE resources behind) Case C (Optimal spacing with optimal completion) Right well spacing and optimal completion will enhance recovery and value #### Permian Basin Operator – HD Completion #### Latest Design Change – Reduction in Perf Cluster Spacing (MDTR IR 2016) Tightened cluster spacing should yield a greater number of shorter fractures with the majority of the fracture surface area concentrated near the wellbore. Design recently implemented in Wolfcamp A-Lower in Wolf and Jackson Trust asset areas – initial well performance results are positive and additional high density cluster spacing treatments are anticipated. Current It is hard to create uniform long fractures for all perforation clusters it is a **better strategy** to target more effective fractures with shorter cluster spacing — HD Completion Note: "Lbs/ft" and "Bbl/ft" refer to sand and fracturing fluid volume per foot of completed lateral length, respectively. # Pressure depletion propagation is very **slow** in the unconventional reservoirs! Pressure Depletion Time Depending on Reservoir Mobility Ratio - k/μ $$t = \frac{948 \emptyset C_t d_i^2}{\frac{k}{\mu}}$$ $$\Rightarrow \frac{\sqrt{\varphi} + \sqrt{k}}{\mu} \times \Delta p \times \frac{1}{\sqrt{t}}$$ Thus, we need - (1) larger fracture surface area for higher rate; and - (2) tighter fracture spacing for faster depletion #### SPE Hydraulic Fracturing Technology Conference # Pressure depletion propagation is very **slow** in the unconventional reservoirs! #### Field Data Set - Tighter Cluster Spacing Wells Over-Perform Pressure Depletion Time Depending on Reservoir Mobility Ratio - k/μ #### Thus, we need - (1) larger fracture surface area for higher rate; and - (2) tighter fracture spacing for faster depletion # Tighter Cluster Spacing Shows More Depletion Area (the same depletion condition) # Dual porosity modeling Given Cluster/Fracture Spacing of 20ft, There Is More Depletion Area Comparing to the 40ft Cluster Spacing. Dual porosity modeling # Tighter Cluster Spacing Shows More Depletion Area (the same depletion condition) Given Cluster/Fracture Spacing of 20ft, There Is More Depletion Area Comparing to the 40ft Cluster Spacing. $EUR = \int f(Rqi, A, k) \Delta p dt$ ## It takes many different completion designs to reach an "optimal" one! - Let try different of completion designs - 4 different cluster spacings: 10, 15, 20, 30 ft - 4 different clusters/stage: 3, 5, 8, 10 - 4 different fluid intensities: 40, 50, 60, 75 bbl/ft - 4 different proppant intensities: 1000, 2000, 2500, 3000 lbm/ft - 2 different pumping rates/cluster: 6, 12 bpm/cluster - 2 different fluid types (viscosity): 1 and 10 - 2 different proppant size combinations: 25:75, 50:50 of 100 mesh and 40/70 - The total combinations would be 4x4x4x4x2x2x2 = 2,048 possible designs - The total cost would be 2048x6 \$MM/well > \$12 billion - It may take LONG time 2,048/100 wells/year > 20 years to implement/test the designs - It is prohibitively expensive and time-consuming by field trial-error approach - Plus, the inability to understand the unexpected results #### **Problem Statement** Could we use the latest complex fracture modeling technologies to speed up the well completion optimization and well spacing optimization? # The Objective - To test and demonstrate using the latest modeling technologies to help us **costeffectively speed up** optimization process of well completion and well spacing in the unconventional reservoir development - Build and calibrate the models with 7-well completion and production history - Optimize well completion designs with the calibrated models # Workflow # The Case History of 7 Wells and the History Match #### Well Location and Basic Information - HZ Wells placed in the Wolfcamp formation, Upton county - Completed and started producing in 2014 190 Stages 972 clusters | Well Name | 4H | 5H | 6H | 9H | 7H | 1H | 2H | |-----------------------------|---------------------------|-------|-------|-------|------------------|-------|------------------| | Lateral length (ft) | 8,222 | 8,642 | 8,642 | 8,642 | 9,244 | 8,851 | 7,922 | | | 29 | 30 | 30 | 30 | 31 | 18 | 22 | | | 138 | 145 | 145 | 145 | 155 | 112 | 132 | | Cluster Spacing (ft) | 60 | 60 | 60 | 60 | 60 | 75 | 60 | | Fracturing Fluid Type | slick water, x-linked gel | | | | | | | | Proppant Type | 30/50 +
20/40 | 30/50 | 40/70 | 40/70 | 30/50 +
20/40 | 40/70 | 30/50 +
20/40 | | Clean Fluid Amount (bbl/ft) | 26 | 26 | 27 | 29 | 27 | 40 | 19 | | Proppant Amount (lb/ft) | 1,060 | 1,055 | 1,110 | 1,100 | 1,121 | 1,044 | 996 | | Sector Model Properties | | | | | | |-------------------------|--|--|--|--|--| | 310 ft | | | | | | | O ft | | | | | | | ft | | | | | | | ft | | | | | | | 280 psi | | | | | | |) | | | | | | | 2 Mpsi | | | | | | | .43 | | | | | | | | | | | | | ## **Example of Pumping History Match** ### Non-Uniform Fractures Generated From Fracture Modeling (SPE 189855) - 3D non-planar fractures with non-uniform length and height. - P50 for full length of hydraulic and propped fracture: ~250 ft and ~200ft. #### The Distributions of Fracture Length and Fracture Height # **Completion Design Optimization** **SPE Hydraulic Fracturing Technology Conference** #### Principle of Optimizing Completion Designs - Production is a function of fracture surface area - The tighter fracture spacing may result in faster depletion and higher recovery efficiency - Cost and operation risk impact the cluster spacing decision, and perforation design etc (spending less \$ for gained more \$\$) $EUR = \int f(Rqi, A, k) \Delta p dt$ ## **Optimize Completion Designs** | Design Parameter | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | Case 7 | |------------------------------|--------|--------|--------|--------|--------|--------|--------| | Cluster spacing, ft | 10 | 10 | 10 | 10 | 75 | 75 | 30 | | Clusters/Stage | 10 | 10 | 5 | 5 | 3 | 3 | 5 | | Pumping rate/Cluster,
bpm | 6 | 12 | 12 | 12 | 20 | 20 | 12 | | Clean Fluid, bbl/ft | 40 | 40 | 40 | 60 | 40 | 60 | 60 | | Proppant, lbm/ft | 2000 | 2000 | 2000 | 3000 | 2000 | 3000 | 3000 | | Slick Water viscosity, cp | 1.5 | 1.5 | 1.5 | 10 | 1.5 | 1.5 | 1.5 | #### SPE Hydraulic Fracturing Technology Conference #### Normalized Fracture Surface Area | Cluster spacing, ft | 10 | 10 | 10 | 10 | 75 | 75 | 30 | |---------------------|------|------|------|------|------|------|------| | Clusters/Stage | 10 | 10 | 5 | 5 | 3 | 3 | 5 | | Clean Fluid, bbl/ft | 40 | 40 | 40 | 60 | 40 | 60 | 60 | | Proppant, lbm/ft | 2000 | 2000 | 2000 | 3000 | 2000 | 3000 | 3000 | #### Normalized Fracture Surface Area of Those 7 Wells Older version of completion designs resulted in very small fracture surface area | Well | Cluster
Spacing (ft) | Fluid
(bbl/ft) | Proppant
(lbm/ft) | |------|-------------------------|-------------------|----------------------| | 4H | 60 | 26 | 1060 | | 5H | 60 | 26 | 1055 | | 6Н | 60 | 27 | 1110 | | 9H | Histori | calDe | esigns
1100 | | 7H | 60 | 27 | 1121 | | 1H | 75 | 40 | 1044 | | 2H | 60 | 19 | 996 | | Case | Cluster
spacing (ft) | Fluid
(bbl/ft) | Proppant
(lbm/ft) | | |-------|-------------------------|-------------------|----------------------|--| | 1 | 10 | 40 | 2000 | | | 2 | 2 10 | | 2000 | | | 3 _10 | | 40 | 2000 | | | 4 | 1 estil | ng Des | signs
3000 | | | 5 | 75 | 40 | 2000 | | | 6 | 6 75 | | 3000 | | | 7 | 30 | 60 | 3000 | | ### HD Completion Enhances Completion Effectiveness (results from a 5-stage completion example) - The fracture network generated from the wide cluster spacing (75 ft Case 5) is sparely spread along the wellbore, which results in much less fracture surface area per unit wellbore length - Comparing to Design Case 5, Design Case 4 would create 2.5 times of more fracture surface area, which would significantly improve produce rate $q=f(A\sqrt{k})$ ### Fracture Length Distributions of Different Completion Designs It seems that the wide cluster spacing (75' in Cases 5-6) resulted in more heterogeneous fracture dimensions | Case | Cluster Spacing, Ft | Clusters/Stage | |------|---------------------|----------------| | 1 | 10 | 10 | | 2 | 10 | 10 | | 3 | 10 | 5 | | 4 | 10 | 5 | | 5 | 75 | 3 | | 6 | 75 | 3 | | 7 | 30 | 5 | #### **Conclusions** - The effective fracture spacing is critical to well performance and full field development economics; - Tighter fracture spacing may yield more fracture surface area for higher prod rate - Tighter fracture spacing will speed up depletion for faster economic return - Field data indicate that the wells with tighter cluster spacings outperform the wells with wider cluster spacings; - Completion designs in the unconventional reservoirs can be optimized by complex fracturing modeling with the calibrated geological models, which is cheaper and faster than the field trials or well pilot tests; - For the given formation of Wolfcamp in the Southern Midland Basin, tighter cluster spacing with less clusters per stage may create larger fracture surface area with high fluid and proppant intensity, which ought to increase the initial production rate and the ultimate recovery; and - Frac-hit and some hydraulic communications between horizontal wellbores are expected because of the heterogeneities of formation properties and hydraulic fracturing propagation. Optimizing well completion designs may mitigate the frac-hits. Contact Info Hongjie Xiong | hxiong@utsystem.edu #### The Chance to Avoid Frac-Hits It would take 2,000ft lateral spacing to avoid frac hits! It would need 600ft vertical spacing to avoid frac-hits! It could leave significant amount of resource behind by simply moving laterals farther apart! ### **Dual Porosity Modeling Indicates Low Recovery Efficiency** Recovery efficiency depends on the cluster/fracture spacing - tighter effective cluster/fracture spacing increase recovery efficiency! Cluster Spacing Optimization (Hongjie Xiong) ## Single Porosity Modeling Indicates High Recovery Efficiency Recovery efficiency depends on the cluster/fracture spacing - tighter effective cluster/fracture spacing increase recovery efficiency! Single Porosity Modeling Indicates Significant Pressure Depletion inside Matrix Blocks, which seems not suitable based upon well performance data Single Porosity Modeling may probably not be suitable! **Dual Porosity Modeling** Indicates Little Pressure Depletion within Matrix Blocks Dual Porosity Modeling may be more suitable! ## Stress Anisotropy Impact and Microseismic Validation | DFN | Stress Anisotropy | |-------------------------------------|-------------------| | DFN05: 0 ± 15 ° | 1%, 3%, 5%,10% | | DFN06: 45 ± 15 ° | 1%, 3%, 5%,10% | | DFN07: 90 ± 15 ° | 1%, 3%, 5%,10% | | DFN08: 90 ± 15 °
Reduced Density | 1%, 3%, 5%,10% | SPE Hydraulic Fracturing Technology Conference DFN07 DFN07, SA =10% #### Blind Test with Tracer Data